全职教工 首页 正文
黄芳
2017年05月19日 13:42 返回列表

姓名:黄芳

职称:副教授

办公室:505

邮箱:huangfang@henu.edu.cn

研究方向:数学物理


教育背景:

2006-09 至 2011-12, 华南理工大学, 应用数学, 博士(硕博连读)

2002-09 至 2006-06, 河南大学, 数学与应用数学, 学士


工作经历:

2012.01-至今,河南大学,讲师、副教授


研究领域:数学物理


代表性学术论文:

[1]Fang Huang, Na Wang. Generalized symplectic Schur functions and SUC hierarchy. Journal of Mathematical Physics, 61, 061508 (2020).

[2]Fang Huang, Chuanzhong Li. Polynomial Tau Functions of Symplectic KP and Multi-component Symplectic KP Hierarchies. Annals of Combinatorics, 26: 593-611 (2022). 

[3]Fang Huang, Chuanzhong Li. Symplectic and supersymmetric Schur Q-functions, universal characters and integrable hierarchies. Analysis and Mathematical Physics, 12, 99 (2022).

[4]Fang Huang, Chuanzhong Li. Supersymmetric Schur Q-functions and Super BKP Hierarchy. Advances in Applied Clifford Algebras, 33, 1 (2023).

[5]Fang Huang, Chuanzhong Li. Quantum field presentation for generalized Hall-Littlewood functions. Journal of Mathematical Physics, 64, 013501 (2023).

[6]Fang Huang, Yanjun Chu. Vertex Operators, Littlewood-Richardson Rule for Generalized Symplectic Schur Functions. Chin. Quart. J. of Math., 37(3):81-96 (2022).

[7]Yanjun Chu, Fang Huang, MingXiao Li, Zhujun Zheng, An entropy function of a quantum channel, Quantum Inf. Process 22, 27 (2023).

[8]Fang Huang, Yanjun Chu, Chuanzhong Li. Littlewood-Richardson rule for generalized Schur Q-functions, accepted by Algebras and Representation Theory.


科研项目:

1.高维同调代数的研究,11226192,国家自然科学基金天元基金,2013/01 -2013/12,已结题,主持;

2.高维代数结构的研究及应用, 河南省教育厅科学技术研究重点项目, 2014/01-2015/01, 已结题, 主持.


主讲课程:

抽象代数,线性代数


上一篇: 韩喆
下一篇: 韩小森

Copyright © 2021 河南大学数学与统计学院 版权所有