题 目: Refined floor diagrams relative to a conic and Gromov-Witten invariants of del Pezzo surfaces
主讲人:丁岩峭 副教授
单 位:郑州大学
时 间:2024年12月31日10:30
地 点:数学院南研教室
摘 要:We show that, after the change of variables q=e^{iu}, refined floor diagrams relative to a conic compute generating series of higher genus relative Gromov-Witten invariants with a Lambda class insertion of del Pezzo surfaces. For preferred classes, we show that refined counts of floor diagrams relative to a conic are related to relative Gromov-Witten invariants without Lambda class insertion and Welschinger type invariants of del Pezzo surfaces. The proof uses the degeneration formula in relative Gromov-Witten theory. This talk is based on a joint work in progress with Jianxun Hu.
简 介:丁岩峭 郑州大学数学与统计学院副教授,研究领域为:辛拓扑、枚举几何、镜像对称。主持国家青年基金与河南省青年基金。