{dede:global.cfg_webname/}
  • English
  • 官方微信
  • 首页
  • 栏目名称
    • 测试
  • 第二个
  • 首页
  • 学院概况
    • 学院简介
    • 历史沿革
    • 机构设置
    • 现任领导
    • 历任领导
    • 联系我们
  • 师资队伍
    • 全职教工
    • 讲座 兼职教授
    • 重要人才计划
    • 退休人员名单
  • 人才培养
    • 本科生培养
    • 硕士生培养
    • 博士生培养
  • 科学研究
    • 学术交流
    • 重点学科
    • 科研机构
    • 科研团队
    • 科研成果
    • 讨论班
  • 党团建设
    • 党建动态
    • 工会活动
    • 团学工作
  • 理论学习
    • 主题教育
  • 合作交流
    • 国际合作
    • 校际合作
    • 校企合作
  • 招生就业
    • 招生信息
    • 就业信息
    • 招生宣传
  • 校友之家
    • 校友组织
    • 校友基金
    • 校友活动
    • 百年院庆
    • 校友动态
    • 知名校友
  • 院务信箱

学术交流

  • 学术交流
  • 重点学科
  • 科研机构
  • 科研团队
  • 科研成果
  • 讨论班

学术交流

“Higher Structures and Symplectic Geometry”学术会议

日期:2018-04-28  作者:  点击:[]

会议地点: 河南大学数学与统计学院一楼报告厅

活动时间: 2018年5月12日

 


报告安排: 5月12日上午, 数学与统计学院一楼报告厅

 

8:45am: Openning 领导和嘉宾讲话

9:00am-9:50am Mathieu Stienon (Penn State University)

10:00am-10:50am Wei Hong (Wuhan Univerisity)

11:10am-12:00am Pantelis Damianou (University of Cyprus)

报告题目和摘要:

 

Mathieu Stienon

 

Title: Formality Theorem for Differential Graded Manifolds

 

 

Abstract: The Atiyah class of a dg manifold (M,Q) is the obstruction to the existence of an affine connection that is compatible with the homological vector field Q. The Todd class of dg manifolds extends both the classical Todd class of complex manifolds and the Duflo element of Lie theory.

 

Using Kontsevich's famous formality theorem, Liao, Xu and I established a formality theorem for smooth dg manifolds: given any finite-dimensional dg manifold (M,Q), there exists an L_oo quasi-isomorphism of dglas from an appropriate space of polyvector fields endowed with the Schouten bracket [-,-] and the differential [Q,-] to an appropriate space of polydifferential operators endowed with the Gerstenhaber bracket [[-,-]] and the differential [[m+Q,-]], whose first Taylor coefficient (1) is equal to the composition of the action of the square root of the Todd class of the dg manifold (M,Q) on the space of polyvector fields with the Hochschild--Kostant--Rosenberg map and (2) preserves the associative algebra structures on the level of cohomology.

 

 

Wei Hong

 

Title: Poisson Cohomology of Holomorphic Toric Poisson Manifolds

 

Abstract: A holomorphic toric Poisson manifold is a smooth toric variety, equipped with a holomorphic Poisson structure, which is invariant under the torus action. In this talk, we describe the Poisson cohomology groups of holomorphic toric Poisson manifolds. And we will explain our theory in the cases of CP^n and C^n.

 

 

Pantelis Damianou

 

Title: Transverse Poisson Structures and Kleinian Singularities

 

Abstract: We give a brief general review of the ADE classification problem. The survey includes simple Kleinian singularities, symmetries of Platonic solids, finite subgroups of SU(2), the Mckay correspondence, integer matrices of norm 2 and Brieskorn’s theory of subregular orbits. We conclude with some joint work with H. Sabourin and P. Vanhaecke on transverse Poisson structures to subregular orbits in semisimple Lie algebras. We show that the structure may be computed by means of a simple Jacobian formula, involving the restriction of the Chevalley invariants on the slice. In addition, using results of Brieskorn and Slodowy, the Poisson structure is reduced to a three dimensional Poisson bracket, intimately related to the simple rational singularity that corresponds to the subregular orbit. Finally we present some recent results on the minimal orbit.

 

欢迎广大师生热情参与!


上一条:Anomalous diffusion with multiple internal states: modelling, simulation, and applications 下一条:华中师范大学副校长汪荣明座谈会

【关闭】

友情链接

  • 学校教务处
  • 学校党委办公室
  • 学校校长办公室
  • 清华大学数学系
  • 浙江大学数学科学院
  • 上海大学数学系
版权信息