{dede:global.cfg_webname/}
  • English
  • 官方微信
  • 首页
  • 栏目名称
    • 测试
  • 第二个
  • 首页
  • 学院概况
    • 学院简介
    • 历史沿革
    • 机构设置
    • 现任领导
    • 历任领导
    • 联系我们
  • 师资队伍
    • 全职教工
    • 讲座 兼职教授
    • 重要人才计划
    • 退休人员名单
  • 人才培养
    • 本科生培养
    • 硕士生培养
    • 博士生培养
  • 科学研究
    • 学术交流
    • 重点学科
    • 科研机构
    • 科研团队
    • 科研成果
    • 讨论班
  • 党团建设
    • 党建动态
    • 工会活动
    • 团学工作
  • 理论学习
    • 主题教育
  • 合作交流
    • 国际合作
    • 校际合作
    • 校企合作
  • 招生就业
    • 招生信息
    • 就业信息
    • 招生宣传
  • 校友之家
    • 校友组织
    • 校友基金
    • 校友活动
    • 百年院庆
    • 校友动态
    • 知名校友
  • 院务信箱

学术交流

  • 学术交流
  • 重点学科
  • 科研机构
  • 科研团队
  • 科研成果
  • 讨论班

学术交流

2019.5.27-5.30表示论研讨班

日期:2019-06-17  作者:  点击:[]

主讲人:林宗柱教授,

工作单位:Kansas state University and Henan University

Title: Representation theory of towers of algebras and  an introduction to Gelfand-Zetlin theory

Abstract : For a given towers of groups such as  symmetric groups $S_n\subseteq S_{n+1}$ as a subgroups, Vershik and Okounkov started a new representation theory using ideas from Gelfand-Zetlin to consider all these groups at once. In this way, almost all classical theory of constructing irreducible representations symmetric groups can be reconstructed. This idea has been applied to a wider range of representation theories such as representation theory of classical Lie algebra by Molev and many others. It is also applied to Heck algebras and other finite dimensional semisimple algebras. In this series of lectures, I will set up the representation theory for towers of not-necessarily semisimple algebras and will construct basis for projective modules, simple modules, injective modules in terms of the corresponding branching graphs, also called Gelfand-Zetlin graphs. Then I will apply this theory to a tower of algebras arising from Rota-Baxter algebras through repeated extension similar to Jone's construction of towers of algebra from subfactors of type II_1 to get temperley Lie algebras. I will give construction of the corresponding fock spaces with basis consisting certain diagrams similar to young diagrams.  Later I will also apply the theory to a tower of algebras from view point of Okada by using more general variables to get a sheaf of towers of algebras over an algebraic varieties. Hopefully these will provide a model of constructing wall-crossing structures.  These towers of algebra are closed related to rooted binary trees (the branch graph of irreducible modules) which is misteriously related the channel polarization construction by Arikan. This leads to a possible categorificaion of a channel polarization.

时间及地点:

Lecture 1: 5.27 15:00-17:30 数学与统计学院北研究生教室;

Lecture 2:5.28 15:00-17:30 数学与统计学院南研究生教室;

Lecture 3:5. 29 15:00-17:30 数学与统计学院北研究生教室。

上一条:The Malliavin calculus and related topics 下一条:变指数空间及其应用

【关闭】

友情链接

  • 学校教务处
  • 学校党委办公室
  • 学校校长办公室
  • 清华大学数学系
  • 浙江大学数学科学院
  • 上海大学数学系
版权信息