{dede:global.cfg_webname/}
  • English
  • 官方微信
  • 首页
  • 栏目名称
    • 测试
  • 第二个
  • 首页
  • 学院概况
    • 学院简介
    • 历史沿革
    • 机构设置
    • 现任领导
    • 历任领导
    • 联系我们
  • 师资队伍
    • 全职教工
    • 讲座 兼职教授
    • 重要人才计划
    • 退休人员名单
  • 人才培养
    • 本科生培养
    • 硕士生培养
    • 博士生培养
  • 科学研究
    • 学术交流
    • 重点学科
    • 科研机构
    • 科研团队
    • 科研成果
    • 讨论班
  • 党团建设
    • 党建动态
    • 工会活动
    • 团学工作
  • 理论学习
    • 主题教育
  • 合作交流
    • 国际合作
    • 校际合作
    • 校企合作
  • 招生就业
    • 招生信息
    • 就业信息
    • 招生宣传
  • 校友之家
    • 校友组织
    • 校友基金
    • 校友活动
    • 百年院庆
    • 校友动态
    • 知名校友
  • 院务信箱

学术交流

  • 学术交流
  • 重点学科
  • 科研机构
  • 科研团队
  • 科研成果
  • 讨论班

学术交流

Robust BPX Preconditioner for Fractional Laplacians on Bounded Lipschitz Domains

日期:2021-04-21  作者:  点击:[]

报告题目:Robust BPX Preconditioner for Fractional Laplacians on Bounded Lipschitz Domains

主 讲 人:吴朔男

单 位:北京大学

时 间:5月13日10:00

地 点:学院一楼报告厅


摘 要:

We propose and analyze a robust BPX preconditioner for the integral fractional Laplacian on bounded Lipschitz domains. For either quasi-uniform grids or graded bisection grids, we show that the condition numbers of the resulting systems remain uniformly bounded with respect to both the number of levels and the fractional power. The results apply also to the spectral and censored fractional Laplacians.


简 介:

吴朔男,分别于2009年和2014年在北京大学数学科学学院获得学士和博士学位,2014年至2018年在美国宾州州立大学进行博士后研究,2018年秋季加入北京大学数学科学学院信息与计算科学系任助理教授。主要研究方向为偏微分方程数值解,研究内容包括:线弹性问题的非协调混合元的构造和分析、线弹性问题的杂交化方法和多重网格求解器、多相场的建模和计算、高阶椭圆型方程的非协调有限元的构造和分析、和磁流体力学中的磁对流的稳定离散。最近在空间分数阶问题有限元方法的快速求解器上取得进展。研究工作发表在Math. Comp., Numer. Math., SIAM J. Numer. Anal.,J. Comput. Phys.,Comput. Methods Appl. Mech. Engrg.,Math. Models Methods Appl. Sci.等核心期刊上。

上一条:辛扭转映射的全局动力学 下一条:幂零映射的概率

【关闭】

友情链接

  • 学校教务处
  • 学校党委办公室
  • 学校校长办公室
  • 清华大学数学系
  • 浙江大学数学科学院
  • 上海大学数学系
版权信息