{dede:global.cfg_webname/}
  • English
  • 官方微信
  • 首页
  • 栏目名称
    • 测试
  • 第二个
  • 首页
  • 学院概况
    • 学院简介
    • 历史沿革
    • 机构设置
    • 现任领导
    • 历任领导
    • 联系我们
  • 师资队伍
    • 全职教工
    • 讲座 兼职教授
    • 重要人才计划
    • 退休人员名单
  • 人才培养
    • 本科生培养
    • 硕士生培养
    • 博士生培养
  • 科学研究
    • 学术交流
    • 重点学科
    • 科研机构
    • 科研团队
    • 科研成果
    • 讨论班
  • 党团建设
    • 党建动态
    • 工会活动
    • 团学工作
  • 理论学习
    • 主题教育
  • 合作交流
    • 国际合作
    • 校际合作
    • 校企合作
  • 招生就业
    • 招生信息
    • 就业信息
    • 招生宣传
  • 校友之家
    • 校友组织
    • 校友基金
    • 校友活动
    • 百年院庆
    • 校友动态
    • 知名校友
  • 院务信箱

学术交流

  • 学术交流
  • 重点学科
  • 科研机构
  • 科研团队
  • 科研成果
  • 讨论班

学术交流

The Mystery of Pentagram Maps

日期:2021-09-09  作者:  点击:[]

报告题目:The Mystery of Pentagram Maps

主 讲 人:Prof. Dr. BorisKhesin

单 位:University of Toronto

时 间:9月29日8:30

ZOOM ID:567 306 5241

密 码:123456


摘 要:

The pentagram map was originally defined by R.Schwartz in 1992 as a map on plane convex polygons, where a new polygon is spanned by the “shortest” diagonals of the initial one. It turned out to be a beautiful discrete completely integrable system with many relations to other mathematical domains. We describe various extensions and the geometry of this map in higher dimensions. We will also describe the continuous limits of such maps as an evolution of curves in space and explain the relation of this dynamics with equations of the Korteweg-de Vries hierarchy, generalizing the Boussinesq equation in 2D.


简 介:

Boris Khesin studied mathematics at the Moscow State University,Russia. After obtaining his PhD in 1990 under the guidance of Vladimir Arnold, he spent several years at UC Berkeley and Yale University, USA, before moving to Toronto, Canada. Currently he is a Professor of Mathematics at the University of Toronto. His research interests include infinite-dimensional groups, geometry, and Hamiltonian dynamics. Arnold and Khesin authored the book Topological Methods in Hydrodynamics, which appears to be accepted as one of the main references in the field. Since then his main pursuit in mathematics is to find geometry hidden in any fluid motion. Outside of academia Boris likes traveling, tennis, tango, and batonchiki Rot Front -- all t-words.

上一条:A Quick Trip on Matrix/Tensor Decomposition Methods for High-Dimensional Image Recovery 下一条:Undecidability of certain fluid paths, the Navier-Stokes problem and 29000 rubber ducks lost in the ocean

【关闭】

友情链接

  • 学校教务处
  • 学校党委办公室
  • 学校校长办公室
  • 清华大学数学系
  • 浙江大学数学科学院
  • 上海大学数学系
版权信息