{dede:global.cfg_webname/}
  • English
  • 官方微信
  • 首页
  • 栏目名称
    • 测试
  • 第二个
  • 首页
  • 学院概况
    • 学院简介
    • 历史沿革
    • 机构设置
    • 现任领导
    • 历任领导
    • 联系我们
  • 师资队伍
    • 全职教工
    • 讲座 兼职教授
    • 重要人才计划
    • 退休人员名单
  • 人才培养
    • 本科生培养
    • 硕士生培养
    • 博士生培养
  • 科学研究
    • 学术交流
    • 重点学科
    • 科研机构
    • 科研团队
    • 科研成果
    • 讨论班
  • 党团建设
    • 党建动态
    • 工会活动
    • 团学工作
  • 理论学习
    • 主题教育
  • 合作交流
    • 国际合作
    • 校际合作
    • 校企合作
  • 招生就业
    • 招生信息
    • 就业信息
    • 招生宣传
  • 校友之家
    • 校友组织
    • 校友基金
    • 校友活动
    • 百年院庆
    • 校友动态
    • 知名校友
  • 院务信箱

学术交流

  • 学术交流
  • 重点学科
  • 科研机构
  • 科研团队
  • 科研成果
  • 讨论班

学术交流

Quantum algorithms for nonlinear partial differential equations

日期:2022-10-15  作者:  点击:[]


报 告 题 目:Quantum algorithms for nonlinear partial differential equations

主 讲 人:金 石

单 位:上海交通大学

时 间:10月20日15:00

腾 讯 ID: 593-625-376

摘 要:

Nonlinear partial differential equations (PDEs) are crucial to modelling important problems in science but they are computationally expensive and suffer from the curse of dimensionality. Since quantum algorithms have the potential to resolve the curse of dimensionality in certain instances, some quantum algorithms for nonlinear PDEs have been developed. However, they are fundamentally bound either to weak nonlinearities, valid to only short times, or display no quantum advantage. We construct new quantum algorithms--based on level sets --for nonlinear Hamilton-Jacobi and scalar hyperbolic PDEs that can be performed with quantum advantages on various critical numerical parameters, even for computing the physical observables, for arbitrary nonlinearity and are valid globally in time.  These PDEs are important for many applications like optimal control, machine learning, semi-classical limit of Schrodinger equations, mean-field games and many more.Depending on the details of the initial data, it can  display up to exponential advantage in both the dimension of the PDE and the error in computing its observables.  For general nonlinear PDEs, quantum advantage with respect to M, for computing the ensemble averages of solutions corresponding to M different initial data, is possible in the large M limit.

简 介:

金 石,现为上海交通大学自然科学研究院院长,数学学院讲席教授。他同时担任上海国家应用数学中心联合主任与上海交通大学重庆人工智能研究院院长。金石教授是美国数学会首批会士, 美国工业与应用数学学会会士和2018年国际数学家大会邀请报告人, 并于2021年当选为欧洲人文与自然科学院(Academia Europaea)外籍院士与欧洲科学院(European Academy of Sciences)院士。他的研究方向包括科学计算,动理学理论,多尺度计算,计算流体力学, 不确定性量化,机器学习与量子计算等。












上一条:Robustness and Adaptivity of Iterative Solvers 下一条:Normal Cones Intersection Rule and Optimality Analysis for Low-Rank Matrix Optimization with Affine Manifolds

【关闭】

友情链接

  • 学校教务处
  • 学校党委办公室
  • 学校校长办公室
  • 清华大学数学系
  • 浙江大学数学科学院
  • 上海大学数学系
版权信息