{dede:global.cfg_webname/}
  • English
  • 官方微信
  • 首页
  • 栏目名称
    • 测试
  • 第二个
  • 首页
  • 学院概况
    • 学院简介
    • 历史沿革
    • 机构设置
    • 现任领导
    • 历任领导
    • 联系我们
  • 师资队伍
    • 全职教工
    • 讲座 兼职教授
    • 重要人才计划
    • 退休人员名单
  • 人才培养
    • 本科生培养
    • 硕士生培养
    • 博士生培养
  • 科学研究
    • 学术交流
    • 重点学科
    • 科研机构
    • 科研团队
    • 科研成果
    • 讨论班
  • 党团建设
    • 党建动态
    • 工会活动
    • 团学工作
  • 理论学习
    • 主题教育
  • 合作交流
    • 国际合作
    • 校际合作
    • 校企合作
  • 招生就业
    • 招生信息
    • 就业信息
    • 招生宣传
  • 校友之家
    • 校友组织
    • 校友基金
    • 校友活动
    • 百年院庆
    • 校友动态
  • 院务信箱

学术交流

  • 学术交流
  • 重点学科
  • 科研机构
  • 科研团队
  • 科研成果
  • 讨论班

学术交流

Analysis of fully discrete finite element methods for 2D Navier-Stokes equations with critical initial data

日期:2022-12-06  作者:  点击:[]

报告题目:Analysis of fully discrete finite element methods for 2D Navier-Stokes equations with critical initial data

报告人:李步扬

单位:香港理工大学

时间:2022年12月19日10:00

腾讯ID:926-153-668

摘要:First-order convergence in time and space is proved for a fully discrete semiimplicit finite element method for the two-dimensional Navier–Stokes equations with L^2 initial data in convex polygonal domains, without extra regularity assumptions or grid-ratio conditions. The proof utilises the smoothing properties of the Navier–Stokes equations in the analysis of the consistency errors, an appropriate duality argument, and the smallness of the numerical solution in the discrete L^2(0,t_m;H^1) norm when tm is smaller than some constant. Numerical examples are provided to support the theoretical analysis.

简介:Dr. Buyang Li received his Ph.D. degree from City University of Hong Kong in 2012. He was engaged in scientific research and teaching at Nanjing University, University of Tübingen (Germany), and The Hong Kong Polytechnic University. He is currently an associate professor in the Department of Applied Mathematics, The Hong Kong Polytechnic University. His main research areas are scientific computing and numerical analysis for partial differential equations from geometry, physics and engineering applications, including finite element approximation of geometric curvature flow, numerical approximation of rough solutions of nonlinear dispersion and wave equations, numerical methods and analysis for incompressible Navier–Stokes equations, finite element and perfectly matched layer methods for high frequency Helmholtz equations, and numerical solution of nonlinear parabolic equations, phase field equations, fractional partial differential equations, Ginzburg-Landau superconductivity equations, thermistor equations, etc.

上一条:北太天元数值计算通用软件的宣讲 下一条:FUNCTIONAL L-OPTIMALITY SUBSAMPLING FOR MASSIVE DATA

【关闭】

友情链接

  • 学校教务处
  • 学校党委办公室
  • 学校校长办公室
  • 清华大学数学系
  • 浙江大学数学科学院
  • 上海大学数学系
版权信息