{dede:global.cfg_webname/}
  • English
  • 官方微信
  • 首页
  • 栏目名称
    • 测试
  • 第二个
  • 首页
  • 学院概况
    • 学院简介
    • 历史沿革
    • 机构设置
    • 现任领导
    • 历任领导
    • 联系我们
  • 师资队伍
    • 全职教工
    • 讲座 兼职教授
    • 重要人才计划
    • 退休人员名单
  • 人才培养
    • 本科生培养
    • 硕士生培养
    • 博士生培养
  • 科学研究
    • 学术交流
    • 重点学科
    • 科研机构
    • 科研团队
    • 科研成果
    • 讨论班
  • 党团建设
    • 党建动态
    • 工会活动
    • 团学工作
  • 理论学习
    • 主题教育
  • 合作交流
    • 国际合作
    • 校际合作
    • 校企合作
  • 招生就业
    • 招生信息
    • 就业信息
    • 招生宣传
  • 校友之家
    • 校友组织
    • 校友基金
    • 校友活动
    • 百年院庆
    • 校友动态
    • 知名校友
  • 院务信箱

学术交流

  • 学术交流
  • 重点学科
  • 科研机构
  • 科研团队
  • 科研成果
  • 讨论班

学术交流

沿曲线的双线性奇异积分算子的有界性

日期:2022-12-12  作者:  点击:[]

报告题目:沿曲线的双线性奇异积分算子的有界性

报告人:李俊峰 教授

单位:大连理工大学

报告时间:2022年12月16日10:00

腾讯会议ID:110 645 672

密码:1216

摘要:在本次报告中,我将介绍最近关于沿曲线的双线性震荡积分算子和变稀疏的沿曲线的双线性Hilbert变换有界性结果。在这类问题的研究中,我们主要应用了驻相法。这些结果主要是与李国良、王新豫、吴素青的合作下完成的。

简介:李俊峰,大连理工大学教授、博士生导师,德国洪堡学者基金获得者。2005年在北京师范大学获得博士学位,2005年至2019年在北京师范大学工作,历任讲师、副教授、教授。2019年至今在大连理工大学数学科学学院任教授。2005年至2007年在北京应用物理与计算数学研究所从事博士后研究。2008年至2009年在美国芝加哥大学做博士后研究。2011年获得德国洪堡基金会资助,前往德国波恩大学进行访问研究。此外还应邀访问过美国、德国、加拿大、日本、韩国多所大学进行学术交流和访问。主要从事调和分析及其应用方向研究。研究兴趣包括沿曲线的奇异积分算子有界性以及色散方程解的长时间行为。在包括CommPart. Diff. Eq., J. Math. Pures. Appl.,J. Diff. Eq.,J. Math. Anal.,Math. Z.,J. Fourier. Anal. Appl.等国际顶级期刊上发表论文30余篇。曾主持多项国家自然科学基金项目。

上一条: Recruitment dynamics of social insect colonies 下一条:“高顿杯”数学文化节系列报告:双曲几何简介——历史、内容与应用

【关闭】

友情链接

  • 学校教务处
  • 学校党委办公室
  • 学校校长办公室
  • 清华大学数学系
  • 浙江大学数学科学院
  • 上海大学数学系
版权信息