{dede:global.cfg_webname/}
  • English
  • 官方微信
  • 首页
  • 栏目名称
    • 测试
  • 第二个
  • 首页
  • 学院概况
    • 学院简介
    • 历史沿革
    • 机构设置
    • 现任领导
    • 历任领导
    • 联系我们
  • 师资队伍
    • 全职教工
    • 讲座 兼职教授
    • 重要人才计划
    • 退休人员名单
  • 人才培养
    • 本科生培养
    • 硕士生培养
    • 博士生培养
  • 科学研究
    • 学术交流
    • 重点学科
    • 科研机构
    • 科研团队
    • 科研成果
    • 讨论班
  • 党团建设
    • 党建动态
    • 工会活动
    • 团学工作
  • 理论学习
    • 主题教育
  • 合作交流
    • 国际合作
    • 校际合作
    • 校企合作
  • 招生就业
    • 招生信息
    • 就业信息
    • 招生宣传
  • 校友之家
    • 校友组织
    • 校友基金
    • 校友活动
    • 百年院庆
    • 校友动态
    • 知名校友
  • 院务信箱

学术交流

  • 学术交流
  • 重点学科
  • 科研机构
  • 科研团队
  • 科研成果
  • 讨论班

学术交流

Tensor completion via a generalized transformed tensor T-product decomposition without t-SVD

日期:2023-10-07  作者:  点击:[]

报告题目:Tensor completion via a generalized transformed tensor T-product decomposition without t-SVD

主讲人:凌晨教授

单位:杭州电子科技大学理学院

时间:10月11日15:00

地点:龙子湖校区九章学堂C座301

摘要:Matrix and tensor nuclear norms have been successfully used to promote the low-rankness of tensors in low-rank tensor completion. However, singular value decomposition (SVD), which is computationally expensive for large-scale matrices, frequently appears in solving these nuclear norm minimization models. Based on the tensor-tensor product (T-product), in this talk, we first establish the equivalence between the so-called transformed tubal nuclear norm for a third order tensor and the minimum of the sum of two factor tensors’ squared Frobenius norms under a general invertible linear transform. Gainfully, we introduce a spatio-temporal regularized tensor completion model that is able to maximally preserve the hidden structures of tensors. Then, we propose an implementable alternating minimization algorithm to solve the underlying optimization model. It is remarkable that our approach does not require any SVDs and all subproblems of our algorithm have closed-form solutions. A series of numerical experiments on traffic data recovery, color images and videos inpainting demonstrate that our SVD-free approach takes less computing time to achieve satisfactory accuracy than some state-of-the-art tensor nuclear norm minimization approaches.This is a joint work with H. J. He and W. H. Xie.

简介:凌晨,杭州电子科技大学理学院教授,博士生导师。现任中国经济数学与管理数学研究会副理事长,曾任中国运筹学会数学规划分会副理事长、中国运筹学会理事、中国系统工程学会理事、浙江省数学会常务理事。近十多年来,主持国家自科基金和浙江省自科基金各多项、其中省基金重点项目。在Math. Program.、SIAM J. on Optim.、SIAM J.on Matrix Anal.and Appl.、COAP、JOTA、JOGO等国内外重要刊物发表论文多篇。

上一条:Bregman ADMM for Robust Fused Lasso Estimation with Doubly Nonconvex Regularizers 下一条: On the chromatic number of a family of odd hole free graphs

【关闭】

友情链接

  • 学校教务处
  • 学校党委办公室
  • 学校校长办公室
  • 清华大学数学系
  • 浙江大学数学科学院
  • 上海大学数学系
版权信息