
叶嵎林504
姓名:叶嵎林
职称:副教授
办公室:学院附一楼
邮箱:ylye@vip.henu.edu.cn
研究方向:Navier-Stokes及相关流体方程
教育背景:
2013.09-2016.07, 博士, 首都师范大学, 应用数学
2010.09-2013.07, 硕士, 首都师范大学, 应用数学
2005.09-2009.07, 学士, 南开大学, 数学与应用数学
工作经历:
2021.06-至今, 河南大学, 副教授
2016.07-2021.05, 河南大学, 讲师
代表性学术论文:
[1] Ye, Yulin; Wang, Yanqing; Liu, Jitao Energy and helicity conservation in the incompressible ideal flows. Commun. Math. Sci. 23 (2025), no. 5, 1357–1377.
[2] Wei, Wei; Ye, Yulin Energy equality of weak solutions to the Navier-Stokes system in Lorentz spaces. Results Math. 80 (2025), no. 3, Paper No. 95, 14 pp.
[3] Ye, Yulin; Wang, Yanqing; Chkhetiani, Otto Four-fifths laws in incompressible and magnetized fluids: Helicity, energy and cross-helicity. Phys. D 476 (2025), Paper No. 134655, 22 pp.
[4] Wang, Yanqing; Yang, Jiaqi; Ye, Yulin Energy equality criteria in the Navier-Stokes equations involving the pressure. J. Math. Fluid Mech. 27 (2025), no. 1, Paper No. 14, 17 pp.
[5] Ye, Yulin; Wei, Wei; Wang, Yanqing On energy conservation of weak solutions to the α-type Euler models. ZAMM Z. Angew. Math. Mech. 105 (2025), no. 1, Paper No. e202300406, 22 pp.
[6] Ye, Yulin; Wei, Wei; Wang, Yanqing Analytical validation of the helicity conservation for the compressible Euler equations. J. Evol. Equ. 25 (2025), no. 1, Paper No. 23, 23 pp.
[7] Ye, Yulin; Wang, Yanqing Energy conservation for the compressible Euler equations and elastodynamics. J. Math. Fluid Mech. 27 (2025), no. 1, Paper No. 10, 19 pp.
[8] Wang, Yanqing; Yang, Jing; Ye, Yulin On two conserved quantities in the inviscid electron and Hall magnetohydrodynamic equations. Nonlinear Anal. 250 (2025), Paper No. 113668, 15 pp.
[9] Ye, Yulin; Wang, Yanqing; Yu, Huan Energy equality for the isentropic compressible Navier-Stokes equations without upper bound of the density. Ann. Appl. Math. 40 (2024), no. 3, 285–313.
[10] Ye, Yulin; Li, Zilai A note on energy and cross-helicity conservation in the ideal magnetohydrodynamic equations. Math. Methods Appl. Sci. 47 (2024), no. 16, 12871–12882.
[11] Wang, Yanqing; Wei, Wei; Ye, Yulin; Yu, Huan Energy dissipation of weak solutions for a surface growth model. J. Differential Equations 407 (2024), 432–458.
[12] Wang, Yanqing; Xiao, Yanqiu; Ye, Yulin On energy and magnetic helicity equality in the electron magnetohydrodynamic equations. Z. Angew. Math. Phys. 75 (2024), no. 3, Paper No. 118, 17 pp.
[13] Wang, Yanqing; Wei, Wei; Wu, Gang; Ye, Yulin On the energy and helicity conservation of the incompressible Euler equations. J. Nonlinear Sci. 34 (2024), no. 4, Paper No. 63, 28 pp.
[14] Wang, Yanqing; Wang, Ruiling; Ye, Yulin Refined conserved quantities criteria for the ideal MHD equations in a bounded domain. Proc. Amer. Math. Soc. 152 (2024), no. 4, 1673–1687.
[15] Wei, Wei; Wang, Yanqing; Ye, Yulin Calderón-Zygmund theory in Lorentz mixed-norm spaces and its application to compressible fluids. Math. Nachr. 296 (2023), no. 11, 5288–5304.
[16] Wei, Wei; Ye, Yulin; Mei, Xue Energy conservation and Onsager's conjecture for a surface growth model. Dyn. Partial Differ. Equ. 20 (2023), no. 4, 299–309.
[17] Wang, Yanqing; Ye, Yulin; Yu, Huan Energy conservation for the generalized surface quasi-geostrophic equation. J. Math. Fluid Mech. 25 (2023), no. 3, Paper No. 70, 15 pp.
[18] Liu, Jitao; Wang, Yanqing; Ye, Yulin Energy conservation of weak solutions for the incompressible Euler equations via vorticity. J. Differential Equations 372 (2023), 254–279.
[19] Wang, Yanqing; Ye, Yulin; Yu, Huan The role of density in the energy conservation for the isentropic compressible Euler equations. J. Math. Phys. 64 (2023), no. 6, Paper No. 061504, 16 pp.
[20] Wei, Wei; Wang, Yanqing; Ye, Yulin Gagliardo-Nirenberg inequalities in Lorentz type spaces. J. Fourier Anal. Appl. 29 (2023), no. 3, Paper No. 35, 30 pp.
[21] Wang, Yanqing; Ye, Yulin A general sufficient criterion for energy conservation in the Navier-Stokes system. Math. Methods Appl. Sci. 46 (2023), no. 8, 9268–9285.
[22] Wang, Yanqing; Wang, Yongfu; Ye, Yulin On the regularity criteria for the three-dimensional compressible Navier-Stokes system in Lorentz spaces. Math. Methods Appl. Sci. 46 (2023), no. 4, 4763–4774.
[23] Ye, Yulin; Guo, Peixian; Wang, Yanqing Energy conservation of the compressible Euler equations and the Navier-Stokes equations via the gradient. Nonlinear Anal. 230 (2023), Paper No. 113219, 18 pp.
[24] Ye, Yulin; Wang, Yanqing; Wei, Wei Energy equality in the isentropic compressible Navier-Stokes equations allowing vacuum. J. Differential Equations 338 (2022), 551–571.
[25] Li, Zilai; Liu, Hao; Ye, Yulin Global classical solutions to the viscous two-phase flow model with Navier-type slip boundary condition in 2D bounded domains. J. Math. Fluid Mech. 24 (2022), no. 3, Paper No. 85, 34 pp.
[26] Wang, Yanqing; Wei, Wei; Wu, Gang; Ye, Yulin On continuation criteria for the full compressible Navier-Stokes equations in Lorentz spaces. Acta Math. Sci. Ser. B (Engl. Ed.) 42 (2022), no. 2, 671–689.
[27] Li, Zilai; Wang, Huaqiao; Ye, Yulin On non-resistive limit of 1D MHD equations with no vacuum at infinity. Adv. Nonlinear Anal. 11 (2022), no. 1, 702–725.
[28] Wang, Yanqing; Ye, Yulin Energy conservation for weak solutions to the 3D Navier-Stokes-Cahn-Hilliard system. Appl. Math. Lett. 123 (2022), Paper No. 107587, 6 pp.
[29] Ai, Xiaolian; Li, Zilai; Ye, Yulin Global strong solutions to Cauchy problem of 1D non-resistive MHD equations with no vacuum at infinity. Acta Appl. Math. 175 (2021), Paper No. 7, 22 pp.
[30] Jiu, Quansen; Wang, Yanqing; Ye, Yulin Refined blow-up criteria for the full compressible Navier-Stokes equations involving temperature. J. Evol. Equ. 21 (2021), no. 2, 1895–1916.
[31] Li, Zilai; Ye, Yulin On the free boundary problem of 1D compressible Navier-Stokes equations with heat conductivity dependent of temperature. Commun. Math. Sci. 18 (2020), no. 7, 2039–2057.
[32] Li, Zilai; Wang, Huaqiao; Ye, Yulin Global strong solutions to the Cauchy problem of 1D compressible MHD equations with no resistivity. Commun. Math. Sci. 18 (2020), no. 3, 851–873.
[33] Ye, Yulin; Li, Zilai The large time behavior of the free boundary for one dimensional compressible Navier-Stokes equations. J. Math. Phys. 60 (2019), no. 7, 071509, 7 pp.
[34] Ye, Yulin; Li, Zilai Global strong solution to the Cauchy problem of 1D compressible MHD equations with large initial data and vacuum. Z. Angew. Math. Phys. 70 (2019), no. 1, Paper No. 38, 20 pp.
[35] Ye, Yulin; Dou, Changsheng Global weak solutions to 3D compressible Navier-Stokes-Poisson equations with density-dependent viscosity. J. Math. Anal. Appl. 455 (2017), no. 1, 180–211.
[36] Ye, Yulin Global classical solution to the Cauchy problem of the 3-D compressible Navier-Stokes equations with density-dependent viscosity. Acta Math. Sci. Ser. B (Engl. Ed.) 36 (2016), no. 5, 1419–1432.
[37] Ye, Yulin Global classical solution to 1D compressible Navier-Stokes equations with no vacuum at infinity. Math. Methods Appl. Sci. 39 (2016), no. 4, 776–795.
[38] Jiu, Quansen; Li, Mingjie; Ye, Yulin Global classical solution of the Cauchy problem to 1D compressible Navier-Stokes equations with large initial data. J. Differential Equations 257 (2014), no. 2, 311–350.
[39] Ye, Yulin; Dou, Changsheng; Jiu, Quansen Local well-posedness to the Cauchy problem of the 3-D compressible Navier-Stokes equations with density-dependent viscosity. Acta Math. Sci. Ser. B (Engl. Ed.) 34 (2014), no. 3, 851–871.
科研项目:
1. 河南省青年骨干教师培养计划,2024-2027,3万,主持,在研;
2. JKW重点专项,****,2023-2025,150万,主持,已结项;
3. 河南省自然科学基金面上项目,2023.01-2024.12,主持,已结项;
4. 中国博士后科学基金第67批面上资助(二等),2020/01-2021/12,8万元,主持,已结项;
5. 河南省博士后基金面上资助(二等),2020/07-2022/06,8万元,主持,已结项;
6. 2020年国家博士后国际交流计划学术交流项目,2万元,2020/01-2020/12,主持,已结项;
7. 国家自然科学基金青年项目(11701145),2018/01-2020/12,23万元,主持,已结项;
主讲课程:
工程微积分,高等数学,数理方程
荣誉与奖励:
2025年,河南省教育厅优秀科技论文奖二等奖,1/1;
2025年,河南省教育厅科技成果奖一等奖,4/4;
2024年,河南省青年骨干教师培养计划;
2023年,河南省教育厅优秀科技论文奖一等奖,3/3;
2022年,河南省教育厅优秀科技论文奖二等奖,3/3;
2021年,河南省教育厅优秀科技论文奖二等奖,1/1;
2020年,河南省教育厅优秀科技论文奖一等奖,1/1;
2020年,河南省教育厅优秀科技论文奖二等奖,1/1;
2018年,河南大学教学质量竞赛二等奖。