The Cauchy problem for the rotation modified KP equation with negative dispersion-数学与统计学院网站

科学研究

学术交流

首页 >  科学研究 >  学术交流 >  正文
The Cauchy problem for the rotation modified KP equation with negative dispersion
作者:    时间:2018-08-04 浏览次数:

  

报告人:闫威 副教授

工作单位:河南师范大学

报告时间:87日上午11

报告地点:数学与统计学院一楼报告厅

报告摘要:

In this paper, we investigate the rotation modified KP equation with negative dispersion. Firstly, we establish a crucial bilinear estimate. Then, combining the bilinear estimate with the fixed point theorem, we prove that the problem is locally well-posed in H^{s_{1},s_{2}}(\R^{2}) with s_{1}>-\frac{1}{2},s_{2}\geq0. Finally, we prove that the problem is ill-posed in H^{s_{1},0}(\R^{2}) with s_{1}<-\frac{1}{2}. Thus, our result is optimal. Consequently, we answer the open problem proposed by Chen, Liu, Zhang (Trans. Ameri. Math. Soc.2012).

报告人简介:

闫威, 河南师范大学副教授.  研究兴趣包含无穷维动力系统与随机无穷维动力系统以及发展方程的初值随机化,取得了系列深刻的结果。先后在JDE, NA等国际学术期刊上发表学术论文20余篇。主持天元基金、青年基金、面上基金各一项。