科学研究

学术交流

首页 >  科学研究 >  学术交流 >  正文
关庄丹教授《复几何》课程安排
作者:    时间:2018-09-07 浏览次数:

  

课程名称:《复几何》

授课专家:关庄丹教授

工作单位:美国加州大学河滨分校

上课时间:每周二、周三、周四、周五中午1:002:00

上课地点:数学与统计学院一楼报告厅

专家个人简介:

一、教育经历

•获得博士,加利福尼亚大学,伯克利,1993

•获得硕士,中国科学院数学研究所,北京,中国,1986

•获得学士,厦门大学,福建,中国,1982

二、专业工作经历

•2004-今,副教授,加州大学河滨分校。期间在中国驻美领馆(Los Angels)教育处担任“国家优秀自费留学生奖学金”评审专家。

•2000-2004年,助理教授,加州大学河滨分校

•1996-2000年,助理教授,普林斯顿大学数学系

•1996-1999年,国家科学基金会研究员,纽约大学Courant学院

•1993-1996年,讲师,普林斯顿大学数学系

•1986-1987年,理论数学研究员,同时担任中国中央政府的讲师团队成员,中国科学院数学研究所,北京,中国

•1982-1983年,计算方法研究员,高中数学和数学竞赛教师,504研究所,中华人民共和国第五工程部

三、研究领域

目前的研究兴趣集中在复流型、微分几何、代数几何、齐性空间和辛几何(53C55、32M10、53C25、53C07、58G99、14J15),详见参考书目和http://math.ucr.edu/~zguan/vita.html。

四、师从导师

•博士生导师:S. Kobayashi, UCBerkeley, Genealogy Link: C. Allendoerfer, T. Y. Thomas, O. Veblen, E. H. Moore, H. A. Newton, M. Casles, S. D. Poisson, J. V. Lagrange, L. V. Euler, Johann Bernoulli, Jacob Bernoulli

•MSPR(NSF) Fellow Advisor: F. Bogomolov, Courant Institute

•硕士生导师: 钟家庆,北京中科院数学研究所

•Homogeneous Spaces Advisor: J. Dorfmeister, University of Georgia USA

五、最近的出版物(参见http://www.math.ucr.edu/~zguan/bib.html)

•A Classification of Compact Cohomogeneity One Locally Conformal K\"ahler Manifolds, preprint 2017, 12 pages.

•A Note on the Classification of Compact ComplexHomogeneous Locally Conformal K\"ahler Manifolds Journal of Mathematics and Statistics 13(2017), no. 3.

•Examples of Simply Connected Holomorphic SymplecticManifolds which are not Formal I, in preprint 2015; 13 pages.

•(with P. Cernea) Killing Fields Generated by Multiple Solutions to the Fischer-Marsden Equation Intern. J. Math. 26 (2015), no. 4. doi: 10.1142/S0129167X15400066.

•(with P. Cernea) KillingFields Generated by Multiple Solutions to the Fischer-Marsden Equation II Intern. J. Math. 27 (2016), no. 10. doi: 10.1142/S0129167X16500804.

•Modification and the Cohomology Groups of Compact Solvmanifolds II, in preprint 2013

•On Bisectional Negatively Curved Compact K\"ahler-Einstein Surfaces, Pacific Journal of Mathematics 288 (2017), 343--353.

•Positive Lemma, Generalized Extremal-solitons and Second Order Linear Differential Equations,

Advancement and Development in Mathematical Science, vol 1 (2012), issue 2, 13--32.

•Toward a classification of compact real solvmanifolds with real symplectic structures, Journal of Algebra 379 (2013), 144--155. doi: 10.1016/j.algebra.2013.01.011.

•On Classification of Compact Complex Solvmanifolds, doi: 10.1016/j.jalgebra.2011.08.026, J. of Algebra, vol 347 (2011), 69--82.

•Toward a Classification of Symplectic Nilmanifolds, International Mathematical Research Notices, vol 2010 (2010), 4377--4384 2010:doi:10.1093/imrn/rnq049.

•Affine Compact Almost-Homogeneous Manifolds of Cohomogeneity One Central European Journal of Mathematics, vol 7 (2009), 84--123. Note: Theorem 10.2 is true when the manifold is Fano, cohomogeneity one and has a semisimple automorphism group.

•Classification of Compact Complex Homogeneous Manifolds with Pseudo-k\"ahlerian Structures, Jour. of Algebra, vol 324 (2010), 2010--2024; doi:10.1016/j.jalgebra.2010.06.013

•Classification of Compact Homogeneous Manifolds with Pseudo-k\"ahlerian Structures (Announcement) Comptes Rendus Math\'ematiques de l'Acad. Sci. Canada, vol 31 (2009), no. 1. 20--23.

•Modification and the Cohomology Groups of Compact Solvmanifolds, ERA-AMS 13 (2007), 74--81; see also Comments

•Type I Compact Almost Homogeneous Manifolds of Cohomogeneity One---I, Pacific J. of Appl. Math., vol 3 (2011), 43--72(Original proof Jan. 20, 2011).

•Type I Compact Almost Homogeneous Manifolds of Cohomogeneity One---II, Pacific J. of Appl. Math.,vol 3 (2011), 179--202(Original proof Jan. 21, 2011).

•Type I Compact Almost Homogeneous Manifolds of Cohomogeneity One---III, Pacific J. of Mathematics, vol. 261 (2013), 369--388; doi:10.2140/pjm.2013.261.369.

•Type II Compact Almost Homogeneous Manifolds of Cohomogeneity One, Pacific J. of Mathematics, vol. 253 (2011), 383--422; doi:10.2140/pjm.2011.253.383.

•Moser Vector Fields and Geometry of the Mabuchi Moduli Space of K\"ahler Metrics, Geometry, 2014 (2014), article 968064.

六、教学工作

教学:

微积分,微分几何和普通微分方程

数学9A和数学10A(2003年秋季),数学138A(2001年冬天)和数学46(秋季2000)等。

七、联系方式

关老师在加州大学伯克利分校的数学系。要联系关老师,请使用电子邮件:zguan@math.ucr.edu

或者zguan_02@yahoo.com

电话:(951)827 -6462,传真:(909)787-7314

国内手机:13600894993

或写信:

Zhuang-dan Guan,Department of Mathematics University of CaliforniaRiverside, CA 92521-0135USA

关庄丹,美国加州大学河滨校区数学系,92521 -0135

My office is Surge 237.

关老师的办公室是第237号。

加州大学河滨分校。