{dede:global.cfg_webname/}
  • English
  • 官方微信
  • 首页
  • 栏目名称
    • 测试
  • 第二个
  • 首页
  • 学院概况
    • 学院简介
    • 历史沿革
    • 机构设置
    • 现任领导
    • 历任领导
    • 联系我们
  • 师资队伍
    • 全职教工
    • 讲座 兼职教授
    • 重要人才计划
    • 退休人员名单
  • 人才培养
    • 本科生培养
    • 硕士生培养
    • 博士生培养
  • 科学研究
    • 学术交流
    • 重点学科
    • 科研机构
    • 科研团队
    • 科研成果
    • 讨论班
  • 党团建设
    • 党建动态
    • 工会活动
    • 团学工作
  • 理论学习
    • 主题教育
  • 合作交流
    • 国际合作
    • 校际合作
    • 校企合作
  • 招生就业
    • 招生信息
    • 就业信息
    • 招生宣传
  • 校友之家
    • 校友组织
    • 校友基金
    • 校友活动
    • 百年院庆
    • 校友动态
    • 知名校友
  • 院务信箱

学术交流

  • 学术交流
  • 重点学科
  • 科研机构
  • 科研团队
  • 科研成果
  • 讨论班

学术交流

A Scale Invariant Approach for Signal and Image Recovery

日期:2021-09-06  作者:  点击:[]

报告题目:A Scale Invariant Approach for Signal and Image Recovery

主 讲 人:Yifei Lou

单 位:University of Texas Dallas, USA

时 间:9月8日10:30

ZOOM ID:567 306 5241

密 码:123456


摘 要:

I will talk about the ratio of the L1 and L2 norms, denoted as L1/L2, to promote sparsity. Due to the non-convexity and non-linearity, there has been little attention to this scale-invariant model. Compared to popular models in the literature such as the Lp model for p ∈ (0, 1) and the transformed L1 (TL1), this ratio model is parameter free. Theoretically, we present a strong null space property (sNSP) and prove that any sparse vector is a local minimizer of the L1/L2 model provided with this sNSP condition. We then focus on a variant of the L1/L2 model to apply on the gradient. This gradient model is analogous to total variation, which is the L1 norm on the gradient. We discuss an iteratively reweighed algorithm to minimize the proposed model with guaranteed convergence. Experiments on the MRI reconstruction and limited-angle CT reconstruction show that our approach outperforms the state-of-the-art methods.


简 历:

Yifei Lou is an Associate Professor in the Mathematical Sciences Department, University of Texas Dallas, where she has been since 2014. She received her Ph.D. in Applied Math from the University of California Los Angeles (UCLA) in 2010. After graduation, she was a postdoctoral fellow at the School of Electrical and Computer Engineering Georgia Institute of Technology, followed by another postdoc training at the Department of Mathematics, University of California Irvine from 2012-2014. Dr. Lou received the National Science Foun[1]dation CAREER Award in 2019. Her research interests include compressive sensing and its applications, image analysis (medical imaging, hyperspectral, imaging through turbulence), and (nonconvex) optimization algorithms.

上一条:Undecidability of certain fluid paths, the Navier-Stokes problem and 29000 rubber ducks lost in the ocean 下一条:Non-degeneracy of Multi-bubbling Solutions for the Prescribed Scalar Curvature Equations and Applications

【关闭】

友情链接

  • 学校教务处
  • 学校党委办公室
  • 学校校长办公室
  • 清华大学数学系
  • 浙江大学数学科学院
  • 上海大学数学系
版权信息