{dede:global.cfg_webname/}
  • English
  • 官方微信
  • 首页
  • 栏目名称
    • 测试
  • 第二个
  • 首页
  • 学院概况
    • 学院简介
    • 历史沿革
    • 机构设置
    • 现任领导
    • 历任领导
    • 联系我们
  • 师资队伍
    • 全职教工
    • 讲座 兼职教授
    • 重要人才计划
    • 退休人员名单
  • 人才培养
    • 本科生培养
    • 硕士生培养
    • 博士生培养
  • 科学研究
    • 学术交流
    • 重点学科
    • 科研机构
    • 科研团队
    • 科研成果
    • 讨论班
  • 党团建设
    • 党建动态
    • 工会活动
    • 团学工作
  • 理论学习
    • 主题教育
  • 合作交流
    • 国际合作
    • 校际合作
    • 校企合作
  • 招生就业
    • 招生信息
    • 就业信息
    • 招生宣传
  • 校友之家
    • 校友组织
    • 校友基金
    • 校友活动
    • 百年院庆
    • 校友动态
    • 知名校友
  • 院务信箱

学术交流

  • 学术交流
  • 重点学科
  • 科研机构
  • 科研团队
  • 科研成果
  • 讨论班

学术交流

Treating Cardinality Constraint within the Framework of Interval Branch and Bound for Solving the Best Subset Selection Problem

日期:2024-06-13  作者:  点击:[]

报告题目:Treating Cardinality Constraint within the Framework of Interval Branch and Bound for Solving the Best Subset Selection Problem

主  讲 人:Min Sun 教授

单      位:阿拉巴马大学(美国)

时      间:2024年6月14日 16:00

地      点:学院一楼报告厅


摘     要:Many real-world problems in natural science, engineering, statistics, social sciences, and economics can be modeled as continuous global optimization problems. Sometimes, problems would also require us to choose only a handful of parameters from a large number of available parameters, resulting in a cardinality-constrained optimization problem. Cardinality-constraint is often conveniently treated indirectly through special penalty functions. Well-known examples of such indirect approach include ridge regression (l2-penalty), LASSO (l1-penalty), and elastic net (l1-l2 mixed penalty). Cardinality-constraint can also be treated directly to ensure that only a desired small number of parameters are selected in the final optimal solution. Penalty based indirect approach allows almost all existing optimization techniques to be applicable immediately. However, conventional interval branch and bound (IBB) methods do not accept the cardinality-constraint. In this talk, we use the best subset selection (BSS) problem as an example to discuss how the framework of IBB could be modified to accommodate the cardinality-constraint. BSS is a classical problem in statistics that requires choosing a subset from a larger number of available variables to be included in the model which minimizes the residual sum of squares in the linear regression. IBB is a well-known method to solve global optimization problems even when the feasible set is non-convex. We modified main features of the IBB to treat the cardinality-constraint effectively. The resulting algorithm gives a procedure to enumerate all the candidate solutions and discard the sub-optimal solutions by using deletion conditions to finally locate an optimal solution. We also talk about some related optimal and suboptimal algorithms. Finally we report some results of numerical experiments to validate the effectiveness of our methods for solving BSS problem.


简      介:Dr. Min Sun is a Full Professor of Department of Mathematics in the University of Alabama. Dr. Sun obtained his Ph.D. in Applied Mathematics from Wayne State University in 1987. Dr. Sun’s research areas are global optimization, optimal control, minimax and game, multi-objective programming, modeling and simulation with applications in smart and autonomous home energy managements, water resources management, magnetic materials research, and traffic managements. Research results have been published in a variety of international scientific journals in several different areas.


上一条: A theory of counting surfaces in projective varieties 下一条:数学职前教师专业教学技能培养研磨交流会

【关闭】

友情链接

  • 学校教务处
  • 学校党委办公室
  • 学校校长办公室
  • 清华大学数学系
  • 浙江大学数学科学院
  • 上海大学数学系
版权信息