{dede:global.cfg_webname/}
  • English
  • 官方微信
  • 首页
  • 栏目名称
    • 测试
  • 第二个
  • 首页
  • 学院概况
    • 学院简介
    • 历史沿革
    • 机构设置
    • 现任领导
    • 历任领导
    • 联系我们
  • 师资队伍
    • 全职教工
    • 讲座 兼职教授
    • 重要人才计划
    • 退休人员名单
  • 人才培养
    • 本科生培养
    • 硕士生培养
    • 博士生培养
  • 科学研究
    • 学术交流
    • 重点学科
    • 科研机构
    • 科研团队
    • 科研成果
    • 讨论班
  • 党团建设
    • 党建动态
    • 工会活动
    • 团学工作
  • 理论学习
    • 主题教育
  • 合作交流
    • 国际合作
    • 校际合作
    • 校企合作
  • 招生就业
    • 招生信息
    • 就业信息
    • 招生宣传
  • 校友之家
    • 校友组织
    • 校友基金
    • 校友活动
    • 百年院庆
    • 校友动态
    • 知名校友
  • 院务信箱

学术交流

  • 学术交流
  • 重点学科
  • 科研机构
  • 科研团队
  • 科研成果
  • 讨论班

学术交流

A theory of counting surfaces in projective varieties

日期:2024-06-13  作者:  点击:[]

报告题目: A theory of counting surfaces in projective varieties

主  讲 人:蒋云峰 教授

单      位:美国堪萨斯大学

时      间:2024年6月18日 10:00-12:00

地      点:数学与统计学院106


摘      要:The theory of enumerative invariants of counting curves (Riemann surfaces) in projective varieties has been an important theory in the last decades. The enumerative invariants were motivated by theretical physics---string theory and gauge theory, and include Gromov-Witten theory, Donaldson-Thomas theory and more recently Vafa-Witten theory. It is hoped that there may exist a theory of counting algebraic surfaces in projective varieties. A theory of counting surface in a Calabi-Yau 4-fold has been constructed using Donaldson-Thomas theory of 4-folds. In this talk I will try to give evidences of a counting surface theory using stable maps, and explain why it is difficult to construct the counting surface invaraints.


简      介:蒋云峰,美国堪萨斯大学教授,研究代数几何和数学物理,特别是 Gromov-Witten 理论和 Donaldson-Thomas 理论,以及与双有理几何,辛拓扑,几何表示论,枚举组合,S-对偶猜想和镜面对称间的联系。科研成果丰硕,在 Journal of differential geometry, Journal of algebraic geometry, Advances in Mathematic,Journal Reine Angew Math,Inter.Math.Res.Notices,Math. Annalen,Math.Research Letters 等著名数学杂志发表论文多篇,是国际知名的代数几何专家。


上一条:接触问题中的半变分不等式的数值方法(III) 下一条:Treating Cardinality Constraint within the Framework of Interval Branch and Bound for Solving the Best Subset Selection Problem

【关闭】

友情链接

  • 学校教务处
  • 学校党委办公室
  • 学校校长办公室
  • 清华大学数学系
  • 浙江大学数学科学院
  • 上海大学数学系
版权信息