题 目:Necessary and sufficient condition for CLT of linear spectral statistics of sample correlation matrices
主讲人:周望 教授
单 位:新加坡国立大学
时 间:2025年5月23日 15:30
地 点:学院二楼会议室
摘 要: In this talk, I will discuss the central limit theorem (CLT) for the linear spectral statistics (LSS) of sample correlation matrix, constructed from a pxn data matrix X with independent and identically distributed entries having mean zero, variance one, and infinite fourth moments in the high-dimensional regime n/p tending to c in (0,∞)\(1). Especially a necessary and sufficient condition for the CLT is presented.
简 介:周望,新加坡国立大学(National University of Singapore)应用统计系教授,2012获国际统计学会当选成员(Elected Member of International Statistical Institute),2021年获国际数理统计学会(IMS)Fellow,现为国际著名期刊Random Matrices-Theory and Applications主编。周望教授的研究领域包括高维数据估计与检验、高维数据降维、SLE(Schramm–Loewner Evolution)、高维随机矩阵、多元数据分析等。周望教授曾发表高水平论文八十多篇,其中在概率统计、经济、信息论领域顶级期刊Annals of Statistics、Journal of the American Statistical Association、Journal of the Royal Statistical Society, Series B、Annals of Probability、Annals of Applied Probability、Biometrika、Journal of Econometric、Econometric Theory、IEEE Transactions on Information Theory期刊上发表论文二十余篇。