报告题目:Wellposedness for Incompressible Navier-Stokes Equations with Variable Viscosity
报告人:李用声教授
时间:2016-05-25
地点:数学与统计学院二楼会议室
摘要:In this talk we first consider 2-D incompressible Navier-Stokes equations with variable viscosity in critical spaces with negative regularity indices, without smallness assumption on the variation of the density. We show the global wellposedness when the viscosity is a constant. Then we consider the n-D case. We show the global wellposedness under the nonlinear smallness condition on the initial data and smallness assumption on the variation of the density. We also construct some initial data which satisfy such conditions while the norm of the initial volocity may be large.
报告时间:5月25日下午3:30
报告人简介:
李用声,男,华南理工大学数学系教授、博士生导师。1996年于华中理工大学取得博士学位,1998年获国防科工委科技进步奖一等奖(1998年)。研究方向:偏微分方程;研究兴趣:主要从事非线性发展程与无穷维动力系统的研究工作。近年来,主持国家自然科学基金4项,在国内外重要学术刊物上发表论文70余篇,其中部分论文发表在J. Differential Equations、Ann. Inst. H. Poincaré Anal. Non Linéaire、 SIAM J. Math. Anal.等著名刊物上。