报告题目:Efficient and Accurate Numerical Solutions for Helmholtz with High Wave Numbers
报告人:王坤
时间:2016-05-25
地点:数学与统计学院一楼报告厅
摘要:In this talk, we introduce new finite difference schemes for solving the Helmholtz equation with high wave numbers. The most important result presented in this study is that the developed difference schemes are pollution free, and their convergence orders are independent of the wave number k. Let h denote the step size, it will be demonstrated that when solving the Helmholtz equation at large wave numbers and considering kh is fixed, the errors of the proposed new schemes decrease as h decreases even when k is increasing and kh>1.
报告时间:5月25日下午3点
报告人简介:
王坤,重庆大学数学与统计学院副教授,硕士生导师,中国计算数学学会理事。主要从事偏微分方程数值解方面的研究,包括复杂流体力学方程、大波数Helmholtz方程的数值模拟等。2011年获西安交通大学博士学位,2013年获陕西省优秀博士论文。2012.01——2014.01在加拿大Alberta大学从事博士后研究(加拿大PIMS基金资助),应邀多次访问香港理工大学、Alberta大学等,多次在国际会议上做报告。主持和参与国家自然科学基金4项,在Journal of Computational Physics,Communications in Computational Physics等杂志上发表SCI论文20余篇。