报告题目:Efficient Projected Gradient Methods for A Class of L0 Constrained Optimization Problems
报告人:戴彧虹 研究员(中国科学院)
时间:2016-05-14
地点:数学与统计学院一楼报告厅
摘要:Sparse optimization has attracted increasing attention in numerous areas such as compressed sensing, financial optimization and image processing. In this paper, we first consider a special class of l0 constrained optimization problems, which involves box constraints and a singly linear constraint. An efficient approach is provided for calculating the projection over the feasibility set after a careful analysis on the projection subproblem. Then we present several types of projected gradient methods for a general class of l0 constrained optimization problems. Global convergence of the methods are established under suitable assumptions. Finally, we illustrate some applications of the proposed methods for signal recovery and index tracking. Especially for index tracking, we propose a new model subject to an adaptive upper bound on the sparse portfolio weights. The computational results demonstrate that the proposed projected gradient methods are efficient in terms of solution quality.
报告时间:5月14日上午10点
报告人简介:
戴彧虹,湖南涟源人,1992年毕业于北京理工大学,1997年在中国科学院计算数学所获博士学位(导师:袁亚湘)。毕业后在中国科学院数学与系统科学研究院工作,2006年被聘为创新基地研究员,2014年被聘为“冯康首席研究员”。主要从事非线性优化理论、算法及其应用研究,已出版专著一本,发表论文八十余篇。曾获第五届钟家庆数学奖(1998年),国家自然科学奖二等奖(2006,排名第二),德国洪堡奖学金(2004),第十届中国青年科技奖(2007),国家杰出青年科学基金(2011),国际通信大会最佳论文奖(2011),冯康科学计算奖(2015)。曾访问英国剑桥大学、邓迪大学、德国拜罗伊特大学、美国康奈尔大学等著名院校。目前担任中国运筹学会数学规划分会理事长,中国科学院数学院优化与应用研究中心副主任。同时担任《ITOR》、 《Science in China: Mathematics》等多个杂志编委。曾或正在主持国家杰出青年科学基金、中国科学院科技创新交叉与合作团队、973项目优化子课题等多项基金与项目。