报告人:徐瑞
工作单位:山西大学复杂系统研究所
报告时间:10月19日上午10:00
报告地点:数学与统计学院西教
报告摘要:
In this work, an age-structured cholera model with both human-to-human and environment-to-human transmissions and saturation incidence is proposed. In the model, we consider the infection age of infectious individuals and the biological age of pathogen in the environment. It is verified that the global dynamics of the model is completely determined by the basic reproduction number. Asymptotic smoothness is verified as a necessary argument. By analyzing corresponding characteristic equations, we discuss the local stability of each of feasible steady states. Uniform persistence is shown by using the persistence theory for infinite dimensional dynamical system. The global stability of each of feasible steady states is established by using suitable Lyapunov functionals and LaSalle’s invariance principle. Numerical simulations are carried out to illustrate the theoretical results.
报告人简介:
徐 瑞:英国Dundee大学数学生物学专业博士,山西大学复杂系统研究所教授、博士生导师。军队院校“育才奖”金奖获得者。中国生物数学学会常务理事,《生物数学学报》常务编委,科学出版社《生物数学丛书》编委,美国《数学评论》和德国《数学文摘》评论员。主持(完成或在研)国家自然科学基金面上项目4项;出版学术专著2部;发表SCI论文100余篇。