{dede:global.cfg_webname/}
  • English
  • 官方微信
  • 首页
  • 栏目名称
    • 测试
  • 第二个
  • 首页
  • 学院概况
    • 学院简介
    • 历史沿革
    • 机构设置
    • 现任领导
    • 历任领导
    • 联系我们
  • 师资队伍
    • 全职教工
    • 讲座 兼职教授
    • 重要人才计划
    • 退休人员名单
  • 人才培养
    • 本科生培养
    • 硕士生培养
    • 博士生培养
  • 科学研究
    • 学术交流
    • 重点学科
    • 科研机构
    • 科研团队
    • 科研成果
    • 讨论班
  • 党团建设
    • 党建动态
    • 工会活动
    • 团学工作
  • 理论学习
    • 主题教育
  • 合作交流
    • 国际合作
    • 校际合作
    • 校企合作
  • 招生就业
    • 招生信息
    • 就业信息
    • 招生宣传
  • 校友之家
    • 校友组织
    • 校友基金
    • 校友活动
    • 百年院庆
    • 校友动态
    • 知名校友
  • 院务信箱

学术交流

  • 学术交流
  • 重点学科
  • 科研机构
  • 科研团队
  • 科研成果
  • 讨论班

学术交流

现代调和分析与PDEs

日期:2019-12-31  作者:  点击:[]

报告人:苗长兴

工作单位:北京应用物理与计算数学研究所

报告时间:1月12日9:00

报告地点:数学院南阶教室

报告摘要:

本次报告重点介绍近四十年来非线性色散方程、流体动力学方程研究中的重要进展,简要阐述现代调和分析在这些突破性研究中发挥的重要作用。与此同时,从宏观的角度分析PDE经典的研究方法与现代调和分析方法的关系. 报告内容如下:

1.Fourier分析与PDE的求解方法。2.离散调和分析与PDE的求解。3.PDE的经典研究方法-调和分析观点。4.PDE的经典研究方法与现代调和分析方法的比较。5.振荡积分、格点估计与Weyl定理等其中将涉及三代奇异积分算子与椭圆边值问题、拟微分算子与变系数线性偏微分方程、Harday-Littlewood极大函数理论、Fourier 限制型估计、流形上的非线性色散方程、Littlewood-Paley理论、调和分析在其他数学领域的应用(如:解析数论、数学物理等)

报告人简介:

苗长兴,北京应用物理与计算数学研究所研究员、中国工程物理研究院杰出专家。曾先后荣获于敏数理科学奖、国家杰出青年基金、中国工程物理研究院首届杰出专家等。是我国自己培养的在国际偏微分方程领域有影响的杰出数学家。在国内率先开展偏微分方程的调和分析方法研究,在中国相对落后的、国际大牌数学家竞争的研究领域占有一席之地。在国际一流的数学刊物(如:CPAM、CMP、ARMA、JMPA、JFA、AIHP、PLMS、CPDE、SIAM、IUMJ、Revista Mate.Iber.等)上发表论文七十余篇, 主要贡献集中表现在调和分析、非线性色散方程的散射理论与流体动力学方程的数学理论等研究领域,解决了若干个具有国际影响的数学问题,得到了美国科学院院士、著名数学家Kenig、 Constantin等国际同行的高度评价。在科学出版社先后出版了《调和分析及其在偏微分方程中的应用》、《偏微分方程的调和分析方法》、《非线性波动方程的现代方法》、《Littlewood- Paley理论及其在流体动力学方程中的应用》等四部专著。

上一条:A Cross Diffusion System Modelling Crime Hotspots 下一条: Decay and Symmetry for Solitary Solutions of Degaspeis-procesi Equation

【关闭】

友情链接

  • 学校教务处
  • 学校党委办公室
  • 学校校长办公室
  • 清华大学数学系
  • 浙江大学数学科学院
  • 上海大学数学系
版权信息