{dede:global.cfg_webname/}
  • English
  • 官方微信
  • 首页
  • 栏目名称
    • 测试
  • 第二个
  • 首页
  • 学院概况
    • 学院简介
    • 历史沿革
    • 机构设置
    • 现任领导
    • 历任领导
    • 联系我们
  • 师资队伍
    • 全职教工
    • 讲座 兼职教授
    • 重要人才计划
    • 退休人员名单
  • 人才培养
    • 本科生培养
    • 硕士生培养
    • 博士生培养
  • 科学研究
    • 学术交流
    • 重点学科
    • 科研机构
    • 科研团队
    • 科研成果
    • 讨论班
  • 党团建设
    • 党建动态
    • 工会活动
    • 团学工作
  • 理论学习
    • 主题教育
  • 合作交流
    • 国际合作
    • 校际合作
    • 校企合作
  • 招生就业
    • 招生信息
    • 就业信息
    • 招生宣传
  • 校友之家
    • 校友组织
    • 校友基金
    • 校友活动
    • 百年院庆
    • 校友动态
    • 知名校友
  • 院务信箱

学术交流

  • 学术交流
  • 重点学科
  • 科研机构
  • 科研团队
  • 科研成果
  • 讨论班

学术交流

Lectures on Quiver Representations

日期:2021-09-20  作者:  点击:[]

报告题目:Lectures on Quiver Representations

主 讲 人:Antoine Caradot

单 位:河南大学

时 间:每周三19:00

ZOOM ID:567 306 5241

密 码:123456


摘 要:

Quivers and their representations were introduced in the second half of the last century to study problems in linear algebra, such as classifying tuples of subspaces of a prescribed vector space. They soon became quite prominent in the representation theory of finite dimensional algebras, and even beyond with connections to domains like Kac-Moody algebras or geometric invariant theory. The purpose of these lectures is to give an introduction to the representation theory of quivers and to describe one of its connections with Kac-Moody algebras. The plan is as follows: 1. The first section will present the definitions of quivers, representations, path algebras and their first properties. We will introduce the classification problem and describe the simple and indecomposable projective modules of quivers without oriented cycles. 2. In the second section we will introduce the representation space of a quiver. As it is equipped with an action of a product of general linear groups, we can describe the orbits of this action. From there, we will be able to prove the classification of quivers of finite orbit type, and we will then explain the classification of tame quivers. 3. The third section is devoted to a connection between quivers and Kac-Moody algebras. We will describe how the construction of Nakajima’s quiver varieties provides a realisation of the irreducible highest weight integrable representations of Kac-Moody algebras.


简 介:

Antoine Caradot is now a postdoctor in School of Mathematics and Statistics of Henan University. His main research interest is the representation theory.

上一条:元学习的思想方法概述 下一条:Leray's Backward Self-similar Solutions to the 3D Navier-Stokes Equations in Morrey Spaces

【关闭】

友情链接

  • 学校教务处
  • 学校党委办公室
  • 学校校长办公室
  • 清华大学数学系
  • 浙江大学数学科学院
  • 上海大学数学系
版权信息