{dede:global.cfg_webname/}
  • English
  • 官方微信
  • 首页
  • 栏目名称
    • 测试
  • 第二个
  • 首页
  • 学院概况
    • 学院简介
    • 历史沿革
    • 机构设置
    • 现任领导
    • 历任领导
    • 联系我们
  • 师资队伍
    • 全职教工
    • 讲座 兼职教授
    • 重要人才计划
    • 退休人员名单
  • 人才培养
    • 本科生培养
    • 硕士生培养
    • 博士生培养
  • 科学研究
    • 学术交流
    • 重点学科
    • 科研机构
    • 科研团队
    • 科研成果
    • 讨论班
  • 党团建设
    • 党建动态
    • 工会活动
    • 团学工作
  • 理论学习
    • 主题教育
  • 合作交流
    • 国际合作
    • 校际合作
    • 校企合作
  • 招生就业
    • 招生信息
    • 就业信息
    • 招生宣传
  • 校友之家
    • 校友组织
    • 校友基金
    • 校友活动
    • 百年院庆
    • 校友动态
    • 知名校友
  • 院务信箱

学术交流

  • 学术交流
  • 重点学科
  • 科研机构
  • 科研团队
  • 科研成果
  • 讨论班

学术交流

数学与统计学院留学归国人员学术报告会

日期:2020-10-06  作者:  点击:[]

报告一

报告题目:自守L-函数的解析性质

主 讲 人:唐 恒 才

单 位:河南大学数学与统计学院

时 间:10月10日9:00

地 点:数学院二楼会议室

ZOOM ID:210 089 8623

密 码:123456

摘 要:

本报告主要讨论自守L-函数的解析性质,探究与之相关的Riemann假设、Lindelof猜想、Ramanujan猜想最新研究进展。最后介绍一下香港访学期间的最新研究成果。

简 介:

唐恒才,副教授,博士生导师,香港大学访问学者。主要研究解析数论中的自守L-函数与素数分布。主持完成国家自然科学基金委项目青年基金、天元基金各一项,在研面上项目一项。获2019年河南省自然科学奖三等奖一项,开封市第十四届青年科技奖,获开封市优秀教师荣誉称号。

报告二

报告题目:Challenges of Multiphase Flow Simulation in Subsurface Reservoir Applications

主 讲 人:谢 亚 伟

单 位:河南大学数学与统计学院

时 间:10月10日9:00

地 点:数学院二楼会议室

ZOOM ID:210 089 8623

密 码:123456

摘 要:

The field of application of multiphase flow simulation in porous media includes gas & oil reservoirs, subsurface water pollutions, nuclear waste and CO2 sequestration, etc. This presentation will focus on the challenges of numerical methods to solve problems involving incompressible and immiscible multiphase flow with capillary pressure and gravity effects in fractured porous media. The aim of my current work involves design of accurate and efficient algorithms to simulate multiphase flow considering capillary pressure and gravity effects in fractured porous media with focus on improving modelling efficiency and accuracy using the higher-resolution methods. The methods are coupled within a control-volume distributed multi-point flux approximation (CVD-MPFA) framework and include reduced - dimensional discrete fracture models.

简 介:

谢亚伟,2007年本科毕业于山东理工大学数学与信息科学学院,2012年于中国工程物理研究院研究生院获理学硕士学位,2018年博士毕业于英国斯旺西大学工程学院Zienkiewicz工程计算中心。2018年8月至今在河南大学数学与统计学院工作。其主要研究领域为偏微分方程数值解法及其在工程中的应用,在Transport in Porous Media, Computational Geoscience等发表学术论文7篇。

报告三

报告题目:Quadratic Differentials, Stability Conditions and Groupoids

主 讲 人:韩 喆

单 位:河南大学数学与统计学院

时 间:10月10日9:00

地 点:数学院二楼会议室

ZOOM ID:210 089 8623

密 码:123456

摘 要:

Bridgeland introduced stability conditions on triangulated categories and proved the space of stability conditions has the structure of a complex manifold. Bridgeland and Smith proved that there exists an isomorphism between the moduli space of meromorphic quadratic differentials on compact Riemann surface and the space of stability conditions on a Calabi-Yau 3 triangulated categories arising from quiver with potentials. These moduli spaces have cell structure which is dual to the exchange graph from cluster theory. Recently, King and Qiu Yu applied the groupoid associated to cluster exchange graph to prove the simple connecteness of the moduli spaces of stability conditions. In this talk, I will introduce a flip-pop groupoid and its generating relations from the cell structure of the moduli space of quadratic differentials. This is a joint work (in progress) with A. King and Qiu Yu.

简 介:

韩喆,河南大学数学与统计学院副教授,研究方向为代数表示论,研究兴趣包括箭图表示和三角范畴及稳定性条件。

上一条:Optimal Large Time Behavior for the 3D Compressible MHD System with Discontinuous Initial Data 下一条:数学教育实证研究选题与设计

【关闭】

友情链接

  • 学校教务处
  • 学校党委办公室
  • 学校校长办公室
  • 清华大学数学系
  • 浙江大学数学科学院
  • 上海大学数学系
版权信息